
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

WACV
#760

WACV
#760

WACV 2022 Submission #760. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

FASSST: Fast Attention Based Single-Stage Segmentation Net for Real-Time
Instance Segmentation

Anonymous WACV submission

Paper ID 760

Abstract

Real-time instance segmentation is crucial in various
AI applications. This work designs a network named Fast
Attention based Single-Stage Segmentation NeT (FASSST)
that performs instance segmentation with video-grade speed.
Using an instance attention module (IAM), FASSST quickly
locates target instances and segments with region of interest
(ROI) feature fusion (RFF) aggregating ROI features from
pyramid mask layers. The module employs an efficient single-
stage feature regression, straight from features to instance
coordinates and class probabilities. Experiments on COCO
and CityScapes datasets show that FASSST achieves state-of-
the-art performance under competitive accuracy: real-time
inference of 47.5FPS on a GTX1080Ti GPU and 5.3FPS on
a Jetson Xavier NX board with only 71.6GFLOPs.

1. Introduction

Various computer vision applications, such as object de-
tection and semantic segmentation, have undergone remark-
able progress in recent years [5, 11, 6]. Nevertheless, as a
more complex task, instance segmentation requires precise
locations and semantic masks of all instances in a frame,
which still remains a great challenge especially its imple-
mentation on resource-constrained edge/terminal devices.
Modern researches on instance segmentation mainly fall
into two categories: i) Pixel-wise approach [10, 12] which
learns an affinity relation between image pixels and segments
image by segregating pixels of different instances and group-
ing pixels of same instance. However, a post-processing is
needed to separate instances, leading to unnecessary com-
putational complexity and low speed. ii) Proposal-based
approach [13, 9] which first proposes object candidates by
bounding boxes, then selects interested ones of them, and
at last performs masking. This strategy avoids handling all
pixels of an image, but still requires multiple steps of com-
putationally expensive candidate proposal. Also, a large
amount of segmentation time is wasted on the unadopted

Proposal-based 

approach with multiple 

steps (e.g., Mask R-CNN)

Figure 1. Different instance segmentation approaches.

candidates or overlapped areas, making it hard to achieve a
real-time speed.

To overcome these hurdles, we design FASSST (Fast
Attention-based Single-Stage Segmentation NeT) for real-
time instance segmentation. The contributions are threefold:
1) an instance attention module (IAM) is devised to locate
and segment the target instances, instead of learning pixel-
wise relations or proposing object candidates; 2) a single-
stage feature regression strategy that produces instance co-
ordinates and class probabilities straight from features is
used for video speed signal processing; 3) segmentation is
done via a region of interest (ROI) feature fusion (RFF), ag-
gregating ROI features from the pyramid mask layers and
delivering competitive accuracy with fewer layers.

Figure 1 compares several related works and highlights
the difference of the proposed FASSST. Experimental re-
sults on COCO [21] and CityScapes [7] show that FASSST
achieves state-of-the-art performance under competitive ac-
curacy: real-time inference of 47.5FPS on a GTX1080Ti

1



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

WACV
#760

WACV
#760

WACV 2022 Submission #760. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

GPU and 5.3FPS on a Jetson Xavier NX board with only
71.6GFLOPs. In what follows, Section 2 reviews some
related works. Section 3 illustrates the FASSST design. Sec-
tion 4 presents experiments on two large-scale datasets and
Section 5 draws the conclusion.

2. Related Instance Segmentation Work

Pixel-wise: Existing pixel-wise approaches for instance
segmentation are usually realized by grouping instance pix-
els into an arbitrary number of instances. Recent work [10]
proposes a discriminative loss function to learn pixel-wise
relations by pushing away pixels belonging to different in-
stances and grouping pixels in the same instance. Later,
SSAP [12] uses a pixel-pair affinity pyramid to group two
pixels each time. And SGN [22] reframes the instance seg-
mentation problem into a sequence of sub-grouping prob-
lems. However, these methods suffer from unsatisfactory
accuracy and speed due to their per-pixel grouping and ex-
pensive post-processing.

Proposal-based: Driven by the advancement of object
detection networks, recent works perform instance segmen-
tation with R-CNN to first propose object candidates and
then segment interested ones of them. The work in [8]
utilizes the shared convolutional features among object can-
didates in segmentation layers. DeepMask [25] is developed
for learning mask proposals based on Fast R-CNN. Multi-
task cascaded network [9] is developed with an instance-
aware semantic segmentation on object candidates. Mask
R-CNN [13] is developed as the extension of Faster R-CNN
with a mask branch. All these approaches require multi-
ple steps that first generate object candidates, then segment
interested ones of them, and at last detect and recognize
the correct ones. Apparently, such object proposal methods
waste unnecessary computation on the unadopted candidates
and overlapped areas of candidates.

Single-stage: Lately, there are attempts to produce
a single-stage instance segmentation [3, 29, 17, 27,
4]. FCIS [18] assembles the position-sensitive score
maps within the ROI to directly predict instance masks.
YOLACT [2] tries to combine the prototype masks and pre-
dicted coefficients and then crops with a segmented bound-
ing box. PolarMask [30] introduces the polar represen-
tation to formulate pixel-wise instance segmentation as a
distance regression problem. SOLO [28] divides network
into two branches to generate instance segmentation with
predicted object locations. However, they still require sig-
nificant amounts of pre- or post-processing before or after
localization.

3. FASSST

We now elaborate FASSST that leverages an instance
attention module (IAM) to achieve a single-stage real-time

SGN, 

area of interest: 

all pixels

Mask R-CNN, 

area of interest: 

43.7%

FASSST, 

area of interest: 

11.3%

Figure 2. Comparison of area of interest among different instance
segmentation schemes.

instance segmentation. There are three main design goals:
small size, high speed and high accuracy.

3.1. Observations

Instance segmentation usually requires the correct sepa-
ration of all parts in a frame. In practical application such
as autonomous driving and robotics, to precisely detect the
free-space area and predict trajectories, the frames are of
high-resolution (e.g., 2048 × 1024), which contain a large
number of pixels. We divide frame pixels into two parts:
i) Target object pixels, which are important but practically
minority in frames. ii) Background pixels, which are the ma-
jority in most situations. This implies significant processing
time can be saved if instances in a frame can be quickly and
precisely located. The proportions of area of interest among
different approaches are compared in Figure 2 wherein we
calculate the proportions by: area of interest/frame size, it
can be seen the former two approaches need to handle much
more area than in FASSST.

With such analysis, we present the full architecture of
FASSST in Figure 3. Assuming F ∈ RWf×Hf×Df is a
frame, where W , H and D represent the mode dimensions.
First, we use several front convolutional layers of the net-
work backbone as “network head” to extract raw features
E ∈ RWe×He×De of the whole frame. The specific settings
of network head will be further analyzed in the experiment
section. Then, the feature tensor E is parallelly delivered
into the following layers and the IAM. The IAM is applied
to learn instance information tensor I ∈ RWi×Hi×Di , in-
cluding instance coordinates and class probabilities, from
raw features. Next, we use the instance information to lo-
cate ROIs on several pyramid mask layers and obtain the
fused ROI features R ∈ RWr×Hr×Dr by an ROI feature
fusion module (RFF). Note that the fused ROI feature tensor
carries both local and global context information. Finally,
the representation R is fed into the subsequent small-size
convolutional layers to get the final instance segmentation



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

WACV
#760

WACV
#760

WACV 2022 Submission #760. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

+ +
Extracted 

features E

Instance attention module (IAM)

Instance 

information I

ROI feature fusion (RFF)

ROI features
Fused ROI 

features R

Pyramid 

mask layers

FASSST

... R1 R2 R3

...

...

Main network body

Figure 3. Overview of the FASSST architecture.

9 conv layers

...

Extracted 

feature 

tensor E 

Instance 

information 

tensor I

Figure 4. Instance attention module (IAM) architecture.

results S ∈ RWs×Hs .

3.2. Instance Attention Module

The feature regression schemes for object detection (e.g.,
YOLO [26] and SSD [23]) have been proposed to learn
structured output regression to localize instances and proved
to be efficient. Similarly, in the proposed IAM module, we
regard the instance attention as a single-stage regression
problem and directly learn instance coordinates and class
probabilities from raw features. First, the raw feature tensor
E is generated by the network head:

E = extr(F ), (1)

where extr denotes the feature extractor to extract raw fea-
tures from image pixels. Then, as shown in Figure 3, the
IAM further produces the instance locality information I:

I = attn(E), (2)

where attn represents the instance attention process. attn
regards the instance attention as a single-stage regression
problem, which directly learns instance locality information
I from raw features E [26]. Specifically, I is structured as
an n × c × s tensor (that is Wi = n, Hi = c and Di = s),
where n is the largest number of instances for each frame
which varies for different datasets (e.g., in the COCO exper-
iments we set n = 36), c denotes 4 coordinate predictions
of an instance: top-most t, left-most l, bottom-most b, right-
most r, and dimension of s being the number of classes and
respective confidence scores of class probabilities are stored

R3

R2

R1

Figure 5. ROI feature fusion architecture.

Instance 

segmentation 

results S
...

5 conv and 1 deconv layers

Figure 6. Mask generation progress.

along the s-axis. These trained coefficients can provide accu-
rate instance coordinates and class probabilities for a frame.
Some detailed sizes of the adopted convolutional layers are
specified in Figure 4. The particular settings of layer scales
and depths for network head, IAM, and later mask “tail” will
be discussed in Section 4.3. The instance information I will
be fed back to the main network body and applied to locate
the ROI features. It should be noted that the overlapped areas
of instances are multi-time processed in FASSST.

3.3. ROI Feature Fusion

After obtaining the important instance coordinates, the
ROI features can be located on layers. First, we apply a
series of pyramid mask layers to exploit deep features. Note
that it has been proved that the shallow layers explore more
on the instance contours, while the deeper layers focus on
the full instances [31, 19]. Then, we employ the RFF to
fuse the features from ROIs of the pyramid mask layers.
The fused ROI features carry both local (instance core) and



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

WACV
#760

WACV
#760

WACV 2022 Submission #760. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

RFF

Frame F

extr

feed forward attn

Extracted features E

Instance information I

loct

feed forward

feed forward

upsamp

upsamp

ROI features R1

ROI features R2

ROI features R3

mask
Fused ROI features R

+
fuse

Instance segmentation results S

IAM

Figure 7. Workflow of FASSST.

global (instance contour) context information, delivering a
high accuracy. Inside the RFF, we apply upsampling and
ReLU operations to aggregate different features. As shown
in Figure 5, the input to this module contains three ROI
features R1, R2 and R3. Note that R2 has a spatial size
double that of R3, and R1 is double that of R2. To form
these, we first perform upsampling on R3 with a rate of 2
through bilinear interpolation:

Ru
3 = upsamp(R3), (3)

where Ru
3 is the upsampled R3 feature tensor and upsamp

represents the corresponding upsampling function. Then, we
upsample Ru

3 to R2 and apply the upsamp operation again.
Finally, the fused feature tensor R is processed by:

R =fuse(R1,R2,R3)

=ReLU(R1 + upsamp(R2 + upsamp(R3))),
(4)

where fuse denotes the feature fusion function. Note that
a ReLU function is further applied to refine the upsampled
features.

3.4. Mask Generation

To generate instance masks from the fused ROI features,
we further apply several small-size convolutional layers as
the “tail” part of the framework, as shown in Figure 6. We
use 5 convolutional layers and 1 deconvolution layer to learn
the mask representation. Assuming the size of fused ROI
feature tensor R is w×h× d, we use 5 convolutional layers
and 1 deconvolution layer to learn the mask representation.
With the mask outputs produced, we can obtain the final
instance segmentation results S of the proposed framework
FASSST. The whole workflow of FASSST is summarized in
Figure 7, where loct represents the ROI localization process,
and mask represents the final mask generation.

Algorithm 1 Forwards Propagation of FASSST Training
Require: Frame data F , training epoch T .
Ensure: Training accuracy P .

1: for k = 1 : T do
2: Feed F into the network head
3: Obtain the extracted features Ek ← extr(F )
4: Feed Ek to IAM
5: Ik ← attn(Ek), parallelly process the main network

body to pyramid mask layers
6: Locate the ROIs: Rk

1 ,R
k
2 ,R

k
3 ← loct(Ik)

7: RFF: Rk ← fuse(Rk
1 ,R

k
2 ,R

k
3)

8: Feed Rk to mask “tail”: Sk ← mask(Rk)
9: end for

10: Get the training accuracy P

3.5. Training Strategy

The forward propagation of FASSST training is presented
in Algorithm 1. Different from the two- or multi-stage train-
ing of proposal-based instance segmentation approaches, the
training of FASSST is a single-stage end-to-end process.

The loss function in backward propagation of FASSST
training is built on mask loss Lm, localization loss Ll and
classification loss Lc:

L = λmLm + λlLl + λcLc, (5)

where L is the total loss, λm, λl and λc are set as 5.75, 3
and 1.25, respectively. Specifically, the Lm is based on Dice
Loss [15]:

Lm = 1−Dice(maskp,maskg), (6)

where Dice is the corresponding function for dice coeffi-
cients, maskp and maskg are predicted masks and ground
truth masks, respectively. Moreover, Ll and Lc are based on
the conventional Focal Loss [20].

4. Experiments
We present a thorough evaluation and ablation study of

the proposed FASSST. Our experimental setup employs
Caffe for coding; a single NVIDIA GTX-1080Ti GPU card
for hardware realization; and an NVIDIA Jetson Xavier
NX board for terminal implementation. Benchmarking is
made on two instance segmentation datasets: COCO and
CityScapes. Note that in all comparisons, the accuracy and
efficiency data of some open source models are practically
evaluated in our machine. Moreover, the plain FASSST rep-
resents main network body with MobileNet-54-V2 backbone
and network head with input frame scale 416×416. We will
emphasize by suffix if different settings are used. All these
settings will be further discussed in Section 4.3 on ablation
study.



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

WACV
#760

WACV
#760

WACV 2022 Submission #760. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Figure 8. Sample visual results of FASSST on COCO.

Category Approach Backbone AP AP50 AP75 APS APM APL

Pixel-wise
SGN [22] - 25.0 44.9 25.8 - - -
SSAP [12] ResNet-101-FPN 29.4 48.1 28.8 - 28.6 -

Proposal-based

FCIS [18] ResNet-101-C5-dilated 29.2 49.5 - 7.1 31.3 50.0
FCIS+++ [18] ResNet-101-C5-dilated 33.6 54.5 37.9 - - -
MNC [9] ResNet-101-C4 24.6 44.3 24.8 4.7 25.9 43.6
Mask R-CNN [13] ResNet-101-FPN 35.7 58.0 37.8 15.5 38.1 52.4

Single-stage

ExtremeNet [32] Hourglass-104 18.9 44.5 13.7 10.4 20.4 28.3
YOLACT [2] ResNet-101-FPN 31.2 50.6 32.8 12.1 33.3 47.1
SOLO [28] ResNet-101-FPN 37.8 59.5 40.4 16.4 40.6 54.2
SipMask [17] ResNet-101-FPN 32.8 53.4 34.3 9.3 35.6 54.0
CenterMask [17] ResNet-50-FPN 32.9 - - 12.9 34.7 48.7
PolarMask [30] ResNet-101-FPN 30.4 51.9 31.0 13.4 32.4 42.8

Proposed FASSST MobileNet-54-V2 34.2 56.4 38.1 14.9 36.7 53.8
i) - represents not reported or no open source for evaluation.
ii) red: ranking 1st; yellow: ranking 2nd; blue: ranking 3rd.

Table 1. Accuracy comparison with state-of-the-arts on COCO.

4.1. Evaluation on COCO

We first train and evaluate FASSST with the COCO2017
segmentation benchmark that involves 80 foreground in-
stance classes and one background class. The original dataset
contains 118K (train) and 41K (test) instance pixel-level la-
beled images. Specifically, we perform training on train2017
and evaluation on test-dev. Using a batch size as 8, epochs
as 100 and a learning rate as 0.005, each full training on

COCO costs 3 ∼ 4 days. Some visual results by FASSST
are shown in Figure 8 where we sample a wide range of in-
stance sizes. It is observed that existing instances are located
and segmented in the frames by FASSST.

4.1.1 Accuracy Analysis

The accuracy of FASSST on COCO is measured in terms of
the standard average precision (AP) metrics, namely, AP50,



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

WACV
#760

WACV
#760

WACV 2022 Submission #760. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Figure 9. Sample visual results of FASSST on Cityscapes.

AP75, and APS , APM , APL. Here AP50 and AP75 represent
the AP scores over IoU thresholds at 0.5 and 0.75, respec-
tively; APS , APM and APL denote the AP scores for small
objects (area< 322), medium objects (322 <area< 962) and
large objects (area> 962), respectively. In Table 1, we report
the accuracy comparison on COCO between FASSST and
state-of-the-art pixel-wise and proposal-based models. We
conclude that FASSST can achieve competitive accuracy
as well as video speed using the more compact backbone
(MobileNet-54-V2) for the main network body. The average
AP of FASSST reaches 34.2, which outperforms various
state-of-the-arts and is only slightly lower than Mask R-
CNN and SOLO. We argue that FASSST will obtain higher
accuracy if the same complex backbones (e.g., ResNet-101-
FPN and ResNeXt-101-FPN) or same training tricks (e.g.,
multi-scale train/test) are adopted.

4.1.2 Efficiency Analysis

Here we evaluate the inference speed, computational com-
plexity and storage of FASSST. Table 2 compares the FPS
(frames per second), FLOPs (floating-point operations per
second) and storage size between FASSST and state-of-the-
arts. Note that all listed results are practically measured
on one single GTX-1080Ti card. In particular, FASSST ex-
hibits a major niche in the inference speed which reaches
59.2FPS and is 5.7× faster than the popular Mask R-CNN.
This video-grade speed can be considered to be “very fast”
for instance segmentation. Also, the proposed framework re-
quires the least FLOPs (71.6G) and storage (36.3MB) among
all schemes, which are 3.8× and 6.7× smaller than the Mask
R-CNN, respectively.

Approach FPS FLOPs (G) Storage (MB)

SSAP [12] 5.5 - -
FCIS [18] 6.2 364.1 207.0
Mask R-CNN [13] 10.3 273.6 242.3
RetinaMask [20] 6.8 358.3 423.6
MS R-CNN [14] 11.5 - -
YOLACT-550 [2] 41.7 97.3 121.8
SOLO [28] 22.5 - 422.0
PolarMask-400 [30] 23.1 248.7 409.3
FASSST 59.2 71.6 36.3

Table 2. Efficiency comparison with state-of-the-arts on COCO.

4.2. Evaluation on CityScapes

We further test FASSST on the CityScapes, a large-scale
dataset with high quality pixel-level annotations of 5000 im-
ages of 2048 × 1024 resolution collected in street scenes
from 50 different cities. Following the evaluation protocol
for instance segmentation, we select 8 instance labels for
training: person, rider, car, truck, bus, train, motorcycle and
bicycle (belonging to two super categories: human and vehi-
cle, and all other labels are considered as background), which
are regarded as the most important classes in autonomous
driving. The training and testing sets contain 2975 and 1525
images, respectively. Sample visual instance segmentation
results on CityScapes are presented in Figure 9. Again, we
conclude that FASSST can accurately locate and mask the
designated instances, even for crowds in the distance.

4.2.1 Accuracy Analysis

We evaluate the standard metrics AP and AP50, which are
the same with COCO experiments, and individual AP scores
for every instance class. Here we present the accuracy com-



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

WACV
#760

WACV
#760

WACV 2022 Submission #760. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Approach AP AP50 person rider car truck bus train motorcycle bicycle

InstanceCut [16] 13.0 27.9 10.0 8.0 23.7 14.0 19.5 15.2 9.3 4.7
SGN [22] 25.0 44.9 21.8 20.1 39.4 24.8 33.2 30.8 17.7 12.4
SegNet [1] 29.5 55.6 29.9 23.4 43.4 29.8 41.0 33.3 18.7 16.7
SSAP [12] 32.7 51.8 35.4 25.5 55.9 33.2 43.9 31.9 19.5 16.2
Mask R-CNN [13] 26.2 49.9 30.5 23.7 46.9 22.8 32.2 18.6 19.1 16.0
Mask R-CNN[COCO] [13] 32.0 58.1 34.8 27.0 49.1 30.1 40.9 30.9 24.1 18.7
GMIS [24] 27.3 45.6 31.5 25.2 42.3 21.8 37.2 28.9 18.8 12.8
FASSST-768[COCO] 31.1 56.2 34.5 26.8 49.9 28.7 38.3 27.8 24.2 18.7
“[COCO]” means with pretrained COCO model.

Table 3. Accuracy comparison with state-of-the-arts on CityScapes.

Approach FPS FLOPs (G) Storage (MB)

SegNet [1] 2.4 604.7 112.0
SSAP [12] 3.4 - -
Mask R-CNN [13] 6.9 463.5 245.6
YOLACT-700 [2] 21.7 214.3 192.0
PolarMask-800 [30] 18.3 324.8 705.4
FASSST-768 47.5 112.8 43.7

Table 4. Efficiency comparison with state-of-the-arts on CityScapes.

parison on CityScapes between FASSST and state-of-the-art
methods in Table 3. The proposed FASSST with lightweight
MobileNet-54-V2 backbone outperforms various state-of-
the-arts on all AP scores.

4.2.2 Efficiency Analysis

We further report efficiency analysis of FASSST on
CityScapes. As shown in Table 4, FASSST achieves
47.5FPS on the a single GTX1080Ti GPU, which is a 2.2×
speedup versus the representative single-stage instance seg-
mentation method YOLACT. The FLOPs and model size of
FASSST are only 112.8G and 41.3MB, i.e., 1.9× and 4.6×
smaller than YOLACT, respectively. In addition, we further
evaluate FASSST on a terminal device of NVIDIA Jetson
Xavier NX board, the inference speed achieves remarkable
5.3FPS. Therefore, we conclude that FASSST provides a
real-time and hardware-friendly instance segmentation for
edge computing.

4.3. Ablation Study

We run a series of ablations to further analyze FASSST.
Note that all experiments are evaluated on COCO and
CityScapes with the same software-hardware setting.

4.3.1 Network Head

The first concern arises from the beginning of network. As
the network head extracts important features for the sub-
sequent parts, the input frame scale and depth should be
investigated. In Table 5, we compare different heads’ scales
and depths. At a frame scale of 416, changing the head depth
from 4 to 5 provides 3.7 AP gains while 5 to 6 provides 0.1
AP gains and the accuracy becomes stable. Therefore, we

conclude that 5 is the best choice for layer depth of network
head in the main network body. Next, setting depth to be
5, changing input frame scale from 416 to 768 provides 2.2
AP gain, and causes 11.7FPS loss. In practice, we keep
both scales for network head and apply FASSST-416 as the
default, and enable FASSST-768 when the frame sizes are
large (e.g., in CityScapes). Note that same investigation of
depths has been thoroughly performed on the IAM and mask
“tail” modules, and hence we determine the current settings
(9 conv layers for the IAM, and 5 conv and 1 deconv layers
for the mask “tail”).

4.3.2 Backbone Architecture

For the backbone architecture, we avoid using the com-
monly used complex backbones like ResNet-101-FPN and
ResNeXt-101-FPN. In Table 6, we evaluate FASSST with
two different backbones. The results show that ResNet-
50-FPN obtains better accuracy (0.7 higher on AP) than
MobileNet-54-V2 but loses much speed (20.4FPS). Subse-
quently, we employ MobileNet-54-V2 as the default back-
bone due to its compactness and decent accuracy. Neverthe-
less, FASSST with more complex ResNet-50-FPN already
achieves 38.8FPS and outperforms most approaches in Ta-
ble 2 except YOLACT-550. We stress that FASSST can
get competitive accuracy with the lightweight MobileNet-
54-V2 when compared with much larger scale networks (cf.
Table 1).

4.3.3 Number of Boxes

The number of boxes n in IAM plays an important role in the
instance localization prediction, which is set to balance the
performance and computational complexity of IAM. In Ta-
ble 7, we report the AP scores on both COCO and CityScapes
with different n values which are the squared numbers from
4 to 9. As we can see, the speeds FPScoco and FPScity get
lower smoothly as n goes up. Among all schemes, n = 36
and n = 49 get the highest APcoco 34.2 and APcity 31.1,
and thus are determined to be the best settings on COCO and
CityScapes, respectively. The comparison of visual results
on COCO with different n (16, 36 and 81) is further shown
in Figure 10. It can be observed that n = 36 delivers the best



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

WACV
#760

WACV
#760

WACV 2022 Submission #760. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Scale Depth AP AP50 AP75 APS APM APL FPS

416
4 30.5 50.3 31.8 12.4 33.1 46.2 62.3
5 34.2 56.4 38.1 14.9 36.7 53.8 59.2
6 34.3 56.8 38.1 15.1 36.4 53.9 50.6

768
4 33.3 52.6 35.4 14.3 35.2 48.6 52.1
5 36.4 56.7 39.6 16.1 38.3 54.1 47.5
6 36.8 56.9 39.7 16.5 38.7 54.3 40.6

The chosen ones are in bold.
Table 5. Network Head: Larger and deeper head brings higher accuracy, while too large or deep head highly slows down the speed on COCO.

Backbone AP AP50 AP75 APS APM APL FPS

MobileNet-54-V2 34.2 56.4 38.1 14.9 36.7 53.8 59.2
ResNet-50-FPN 34.9 57.6 39.1 15.8 37.0 55.1 38.8

Table 6. Backbone Architecture: Backbone with higher complexity gains expected benefits but lowers the speed on COCO.

Number of Boxes APcoco APcity FPScoco FPScity

16 31.5 27.3 65.1 52.1
25 33.3 29.5 63.5 51.0
36 34.2 30.6 59.2 49.5
49 34.0 31.1 55.6 47.5
64 32.6 30.8 49.6 42.3
81 30.1 28.6 41.9 34.7

“coco” and “city” mean on COCO and CityScapes datasets, respectively.
Table 7. Number of Boxes: More boxes in IAM bring accuracy benefits but speed decreases, while too many boxes cause accuracy loss due
to overfitting.

COCO model AP AP50 person rider car truck bus train motorcycle bicycle

with 31.1 56.2 34.5 26.8 49.9 28.7 38.3 27.8 24.2 18.7
without 25.8 49.2 29.5 21.7 44.9 23.1 33.5 21.0 18.4 14.2

Table 8. Pretrained COCO Model: Pretrained model on COCO remarkably improves the accuracy on CityScapes.

RFF AP AP50 AP75 APS APM APL

with 34.2 56.4 38.1 14.9 36.7 53.8
without 29.5 52.0 33.2 11.4 32.2 46.7

Table 9. RFF: Fused ROI features make significant difference to
instance segmentation accuracy.

n=16, missed 

1 handbag n=36 

n=81, wrongly detected 

2 sports balls, 1 surfboard 

and 1 handbag

Figure 10. Visual results on COCO with different numbers of boxes.

performance for which all instances are precisely located
and segmented.

4.3.4 RFF

The proposed RFF has significant impact on the performance
of instance segmentation results. Table 9 shows the accuracy
results with/without RFF. Note that we directly feed ROI
features of the first pyramid mask layer to the following part

if without RFF. It can be observed that RFF brings a 4.7
improvement on AP, which verifies its importance.

4.3.5 COCO Pretrained Model

Finally we evaluate the impacts of COCO pretrained model
adopted in CityScapes training. Table 8 reports the AP
scores on CityScapes with/without COCO pretrained model.
We have the observation that the COCO pretrained model
provides a 5.3 AP improvement on CityScapes.

5. Conclusion
This work has developed a network named FASSST for

real-time instance segmentation with video-grade speed. An
instance attention module is proposed to locate and seg-
ment the target instances. A single-stage feature regres-
sion strategy is applied to map features to instance coordi-
nates and class probabilities, followed by ROI feature fu-
sion to aggregate information from the pyramid mask layers
for final mask generation. Experiments on the large-scale
COCO and CityScapes datasets demonstrate the state-of-
the-art performance of FASSST: 47.5FPS on a GTX1080Ti
GPU and 5.3FPS on a Jetson Xavier NX board with only
71.6GFLOPs.



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

WACV
#760

WACV
#760

WACV 2022 Submission #760. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

References
[1] Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla.

Segnet: A deep convolutional encoder-decoder architecture
for image segmentation. TPAMI, 39(12):2481–2495, 2017. 7

[2] Daniel Bolya, Chong Zhou, Fanyi Xiao, and Yong Jae Lee.
Yolact: Real-time instance segmentation. arXiv preprint
arXiv:1904.02689, 2019. 2, 5, 6, 7

[3] Jiale Cao, Rao Muhammad Anwer, Hisham Cholakkal, Fa-
had Shahbaz Khan, Yanwei Pang, and Ling Shao. Sipmask:
Spatial information preservation for fast image and video in-
stance segmentation. arXiv preprint arXiv:2007.14772, 2020.
2

[4] Hao Chen, Kunyang Sun, Zhi Tian, Chunhua Shen, Yong-
ming Huang, and Youliang Yan. Blendmask: Top-down meets
bottom-up for instance segmentation. In IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pages
8573–8581, 2020. 2

[5] Xiaozhi Chen, Huimin Ma, Ji Wan, Bo Li, and Tian Xia.
Multi-view 3d object detection network for autonomous driv-
ing. In CVPR, pages 1907–1915, 2017. 1

[6] Yuan Cheng, Guangya Li, Ngai Wong, Hai-Bao Chen, and
Hao Yu. Deepeye: A deeply tensor-compressed neural net-
work hardware accelerator. In ICCAD, pages 1–8, 2019. 1

[7] Marius Cordts, Mohamed Omran, and Sebastian Ramos. The
cityscapes dataset for semantic urban scene understanding. In
CVPR, pages 3213–3223, 2016. 1

[8] Jifeng Dai, Kaiming He, and Sun Jian. Convolutional feature
masking for joint object and stuff segmentation. In CVPR,
2015. 2

[9] Jifeng Dai, Kaiming He, and Jian Sun. Instance-aware seman-
tic segmentation via multi-task network cascades. In CVPR,
pages 3150–3158, 2016. 1, 2, 5

[10] Bert De Brabandere, Davy Neven, and Luc Van Gool. Seman-
tic instance segmentation with a discriminative loss function.
arXiv preprint arXiv:1708.02551, 2017. 1, 2

[11] Christoph Feichtenhofer, Axel Pinz, and Andrew Zisserman.
Convolutional two-stream network fusion for video action
recognition. In CVPR, pages 1933–1941, 2016. 1

[12] Naiyu Gao, Yanhu Shan, Yupei Wang, Xin Zhao, Yinan Yu,
Ming Yang, and Kaiqi Huang. Ssap: Single-shot instance
segmentation with affinity pyramid. In ICCV, pages 642–651,
2019. 1, 2, 5, 6, 7

[13] Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross Gir-
shick. Mask r-cnn. TPAMI, PP(99):1–1, 2017. 1, 2, 5, 6,
7

[14] Zhaojin Huang, Lichao Huang, Yongchao Gong, Chang
Huang, and Xinggang Wang. Mask scoring r-cnn. In CVPR,
pages 6409–6418, 2019. 6

[15] Hoel Kervadec, Jihene Bouchtiba, Christian Desrosiers, Eric
Granger, Jose Dolz, and Ismail Ben Ayed. Boundary loss for
highly unbalanced segmentation. In MIDL, pages 285–296,
2019. 4

[16] Alexander Kirillov, Evgeny Levinkov, Bjoern Andres, Bog-
dan Savchynskyy, and Carsten Rother. Instancecut: from
edges to instances with multicut. In CVPR, pages 5008–5017,
2017. 7

[17] Youngwan Lee and Jongyoul Park. Centermask: Real-time
anchor-free instance segmentation. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 13906–
13915, 2020. 2, 5

[18] Yi Li, Haozhi Qi, Jifeng Dai, Xiangyang Ji, and Yichen Wei.
Fully convolutional instance-aware semantic segmentation.
In CVPR, pages 2359–2367, 2017. 2, 5, 6

[19] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He,
Bharath Hariharan, and Serge Belongie. Feature pyramid
networks for object detection. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 2117–2125,
2017. 3

[20] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and
Piotr Dollár. Focal loss for dense object detection. In ICCV,
pages 2980–2988, 2017. 4, 6

[21] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
ECCV, pages 740–755, 2014. 1

[22] Shu Liu, Jiaya Jia, Sanja Fidler, and Raquel Urtasun. Sgn:
Sequential grouping networks for instance segmentation. In
ICCV, pages 3496–3504, 2017. 2, 5, 7

[23] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian
Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C Berg.
Ssd: Single shot multibox detector. In ECCV, pages 21–37,
2016. 3

[24] Yiding Liu, Siyu Yang, Bin Li, Wengang Zhou, Jizheng Xu,
Houqiang Li, and Yan Lu. Affinity derivation and graph
merge for instance segmentation. In ECCV, pages 686–703,
2018. 7

[25] Pedro O Pinheiro, Ronan Collobert, and Piotr Dollár. Learn-
ing to segment object candidates. In NeurIPS, pages 1990–
1998, 2015. 2

[26] Joseph Redmon and Ali Farhadi. Yolov3: An incremental
improvement. arXiv preprint arXiv:1804.02767, 2018. 3

[27] Zhi Tian, Chunhua Shen, and Hao Chen. Conditional
convolutions for instance segmentation. arXiv preprint
arXiv:2003.05664, 2020. 2

[28] Xinlong Wang, Tao Kong, Chunhua Shen, Yuning Jiang, and
Lei Li. Solo: Segmenting objects by locations. arXiv preprint
arXiv:1912.04488, 2019. 2, 5, 6

[29] Xinlong Wang, Rufeng Zhang, Tao Kong, Lei Li, and Chun-
hua Shen. Solov2: Dynamic and fast instance segmentation.
Advances in Neural Information Processing Systems, 2020. 2

[30] Enze Xie, Peize Sun, Xiaoge Song, Wenhai Wang, Xuebo
Liu, Ding Liang, Chunhua Shen, and Ping Luo. Polarmask:
Single shot instance segmentation with polar representation.
arXiv preprint arXiv:1909.13226, 2019. 2, 5, 6, 7

[31] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang
Wang, and Jiaya Jia. Pyramid scene parsing network. In
CVPR, pages 2881–2890, 2017. 3

[32] Xingyi Zhou, Jiacheng Zhuo, and Philipp Krahenbuhl.
Bottom-up object detection by grouping extreme and cen-
ter points. In CVPR, pages 850–859, 2019. 5


